Omega 3 Testing
Measures percentages of omega-3 fatty acids EPA, DPA and DHA as a potential indicator of various health risks.
DHA Testing
Indicates whether mothers are providing adequate DHA levels to their infants through breastfeeding.
Hair Cortisol Analysis
Provides a complementary method of monitoring stress and cortisol exposure in the body over longer periods of time.
IgG Food Sensitivity
A valuable tool often used to help design elimination diets for patients with several chronic conditions.
Hair Mineral Analysis
Provides the basis for a nutritional balancing program to establish and maintain optimal levels of wellness.

Trace metal imaging with high spatial resolution: Applications in biomedicine

New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.

Zhenyu Qin, Joseph A. Caruso, Barry Lai, Andreas Matusch and J. Sabine Becker (Metallomics, 2011, 3, 28–37)